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Abstract

“Processing” is a framework which includes a minimalistic IDE and provides functional-

ity for rendering animated visual effects. Processing’s hardware-accelerated 3D renderer

uses an API called OpenGL to render graphics on the GPU. However, OpenGL is an

older API that has performance limitations compared to newer APIs. Vulkan is the mod-

ern successor to OpenGL, and related work shows that it can achieve higher throughput

in rendering performance, and make better use of hardware resources. This paper im-

plements a new Vukan renderer into Processing, and then compares the OpenGL and

Vulkan renderers across 13 rendering benchmarks to assess the performance improve-

ments. Hardware profiling tools are also used to identify what causes the performance

gains with the Vulkan renderer. The paper concludes that Vulkan is faster than OpenGL

in almost all benchmarks. Additionally, this paper detail the scenarios in which the

Vulkan renderer outperforms OpenGL, and the reasons for those performance differ-

ences using the hardware profiling data. Processing might gain from Vulkan’s speed

advantages. These findings would benefit the Processing community, which includes a

wide range of programmers from beginner to advanced levels. This paper also discusses

Processing’s ongoing efforts to modernise the platform, whilst fulfilling the community’s

requirement for backwards compatibility; a newer, faster API would help contribute to

this modernisation effort, but there are trade-offs between performance and backwards-

compatibilty, and this paper provides insights into future work to achieve a balance of

both.
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Chapter 1

Introduction

1.1 Context

There is a piece of software named “Processing” [Reas and Fry, 2007] which provides a

minimalistic IDE and a simplified language for creating programs with animated visuals.

It is an efficient way for programmers, regardless of skill level, to write small programs in

Processing. These programs are called “sketches”. The programmer writes code into the

IDE, then clicks a play button. This starts up the programmer’s sketch, which displays

the programmer’s animated visuals.

The framework features many functions to render various graphics on to the screen. To

render these graphics, Processing features a hardware accelerated renderer - this uses the

GPU to render graphics. To interface with the GPU, the renderer uses a popular API

called OpenGL [Ope, 2025], which is a cross-platform graphics API that abstracts the

GPU hardware from the programmer. OpenGL processes the programmer’s commands

on the CPU, and sends data to the GPU for the scene to be rendered. This takes

place in the background in Processing and this is not normally visible to the Processing

developer.

However, as GPU hardware continued to evolve, OpenGL’s old design caused drivers to

have a large overhead [Shiraef, 2016]; that is, the CPU and GPU used a lot of its comput-

ing resources performing tasks such as handing backwards compatibility, error-checking

(to notify the programmer of any programming errors), and supporting legacy features.

1



Chapter 1. Introduction 2

These limitations prompted the creation of newer graphics APIs, and in 2016, the main-

tainers of OpenGL known as The Kronos Group, released the successor to OpenGL;

Vulkan [Vul, 2025b]. Vulkan was designed to address the limitations of OpenGL and be

the new industry-leading standard for cross-platform computer graphics [Lujan et al.,

2019]. This, in essence, improves performance compared to an application that uses

OpenGL. This paper explores the possibility of a Vulkan-based renderer in Processing.

1.2 Aim

In this project, a new Vulkan-based renderer is developed, and tested against Process-

ing’s OpenGL renderer using a set of test programs in the form of Processing sketches.

The primary objective of the project is to determine the performance differences between

the OpenGL renderer and the Vulkan renderer.

1.3 Objectives

1. (O1) To find out what the overall average difference in performance across all
sketches when comparing OpenGL and Vulkan.

2. (O2) To develop a new Vulkan renderer for the Processing framework.

3. (O3) To create 13 benchmarks that will compare the performance of the Vulkan
renderer against the OpenGL renderer.

4. (O4) To find out what the time taken is to process each frame in the sketch’s
runtime in OpenGL and Vulkan.

5. (O5) To find out what the performance difference is between OpenGL and Vulkan
when using Processing’s immediate and retained modes (more details about these
modes can be found in Chapter 3).

6. (O6) To find out how the sketch utilises the hardware in OpenGL and Vulkan, by
monitoring CPU usage information, GPU usage information, and memory usage
information using Intel VTune.

7. (O7) To find out why the sketches perform the way they do in OpenGL and
Vulkan, by using the findings from Intel VTune to link it to the performance
results.

Throughout this report, the objectives will be referenced in the form of O1, O2, O3, O4,

O5, O6 and O7.



Chapter 2

Background

2.1 Processing

2.1.1 Processing Overview

Processing is described as a flexible software sketchbook for learning, prototyping, and

creative coding through visual arts [Pro, 2025]. The language used in the application,

known as the “Processing language”, is designed to generate and modify images, with

an objective to achieve a balance between clarity and advanced features [Reas and Fry,

2007].

While the Processing language is known to be its own programming language, it is in re-

ality a Java dialect which gets preprocessed into pure Java code [Linares-Pellicer et al.,

2009]. When the user clicks on the ”play” button to begin a sketch, Processing per-

forms preprocessing operations in the background, and runs the Java program, without

exposing the pure Java code to the user.

Every compiled sketch is a Java program that includes Processing’s framework code,

called the Processing core. A Processing sketch contains programmer’s code inside a

class, that of which extends the main Processing core class called PApplet [Fry, 2008].

3



Chapter 2. Background 4

2.2 OpenGL

2.2.1 OpenGL’s history

The following section will provide some history and context behind OpenGL, which

explains its evolution up to today with its current design.

Silicon Graphics, Inc, or SGI, was the company that formulated OpenGL. OpenGL was

initially developed to tackle issues from SGI’s “IRIS GL” API, which was difficult to

port to other systems (such as Microsoft’s DOS or Windows). The OpenGL Architecture

Review Board was formed and the initial specification for OpenGL 1.0 was completed on

June 30th, 1992 [Kilgard and Akeley, 2008, Sellers et al., 2013]. OpenGL was structured

as a state machine; objects were created and processed based on OpenGL’s current state

settings [Kilgard, 1997]. The “state machine” design philosophy remained throughout

OpenGL’s lifetime, even through major design overhauls. One such major design change

was in OpenGL 2.0 in 2004, integrating programmable GPU pipelines into the formerly

fixed-function pipeline, which meant that graphics programming was much more flexible.

[Wolff, 2011]. In 2006, OpenGL development was handed over to the Khronos group

[Amador Cambronero et al., 2021].

To maintain backwards-compatibility, OpenGL also retained much of its old designs

dating back to version 1.0, and integrated new features alongside the legacy features.

However, this proved problematic as the older features were incompatible with modern

GPUs, and version 3.0 introduced a deprecation model in an effort to gradually phase

out older features [Shreiner et al., 2009].

OpenGL’s development from this point forward involved adding new features, but it

became clear around this time that OpenGL’s fundamental structure was flawed, and

an entirely new system would be needed [Kenwright, 2017]. Rather than overhauling

the existing system and working around its limitations, the Khronos group superseded

OpenGL with Vulkan in 2016 [Tolo et al., 2018]. However, OpenGL continues to exist

to this day as a usable graphics API, albeit with some performance limitations.
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2.2.2 OpenGL’s performance issues

OpenGL is a mature API that is still used by a wide range of applications today. How-

ever, as technology evolved, the following limitations became apparent;

� Driver overhead - OpenGL has a large overhead [Campbell, 2023, Shiraef, 2016],
because the specification has design limitations that makes translating graphical
workloads to modern hardware complex; this requires the CPU and GPU to use a
lot of computational resources.

� Lack of multi-threading support - OpenGL was not designed to take advan-
tage of multiple cores in the CPU, which poses a serious problem in today’s world
of multi-core devices [Kenwright, 2017]. This is caused by the state machine model;
OpenGL has one global state, and multiple threads trying to access this one state
will result in race conditions, unless properly managed by thread-safety mecha-
nisms, such as mutexes or locks [Szabó and Illés, 2022]. Even then, attempting a
thread-safe multithreaded approach with OpenGL will worsen performance rather
than improved it, because of thread synchronisation, lack of parallelism (only one
thread could run at a time), and the driver performing context switching [Nott,
2013].

� Error checking - OpenGL performs error checking to inform programmers of
errors in their OpenGL code; this uses CPU time [Lapinski, 2017]. This is not ideal
as error checking is performed regardless of the program being in a development
state or a final build.

� Discontinuation and eventual obsolescence - OpenGL is no longer being
developed by The Khronos Group, and it will eventually become a deprecated
API on all platforms [Szabó and Illés, 2020]. Additionally, it will also increasingly
lack support for new hardware features, such as ray-tracing [Allison et al., 2024,
Unterguggenberger et al., 2023]. Currently, significant effort is being put into
modernising the latest revision of Processing [Fry, 2021], so the deprecation of
OpenGL may hold back Processing in that regard.

2.3 Vulkan

2.3.1 Vulkan overview

This project explores Vulkan as a potential solution to the problem of the high OpenGL

overhead. Vulkan is a relatively new API which has been designed to address the limi-

tations of OpenGL. It is designed in such a way that the developer has full control over

what Vulkan does; this elimates unexpected behaviour due to OpenGL’s abstraction of
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graphics hardware [Lujan et al., 2021]. The Vulkan API is very verbose, and operates

on a much lower level than OpenGL, which provides the programmer with much more

control over the hardware [Unterguggenberger et al., 2022].

Vulkan addresses the following limitations from OpenGL:

� Driver overhead - Vulkan is designed to represent modern hardware much better
than OpenGL; this reduces driver overhead significantly [Chandra, 2018]. Addi-
tionally, the programmer must be very explicit about how they want their GPU
hardware to run; this further reduces overhead as less automation and translation
is needed from the driver.

� Multi-threading support - Vulkan is designed with multithreading in mind;
this eliminates the single-core limitations that OpenGL is faced with [Bodurri,
2019]. This is done by having multiple state objects rather than a single global
state; each thread can perform on its own state object.

� Error checking - Vulkan eliminates the overhead of error checking in non-
development builds through using a feature called “validation layers”; an extension
which reports programming errors is loaded during testing. When the programmer
exports a non-development build of the program, the validation layers are removed
and no error checking is performed, which completely eliminates unnecessary error-
checking overheads [Pankratz et al., 2021].

As a consequence of the verbosity and low-level design, Vulkan is significantly more

complicated to program than OpenGL; a typical OpenGL program takes 150 lines of

code to render a single triangle; Vulkan takes around 1000 lines of code to do the same.

[Unterguggenberger et al., 2023].

2.3.2 Performance improvements from other works

A study from Lujan et al. has shown that Vulkan had significant improvements in

overall performance over OpenGL. This was because OpenGL took signficiantly more

single-core CPU time which severely bottlenecked the GPU’s workload, while Vulkan

used multiple threads to distribute the workload. Nilssen has shown that Vulkan can be

up to 96% faster than OpenGL. Other studies from Ferraz et al. and Lujan et al. have

shown that Vulkan saves substantial energy which is especially beneficial for battery-

powered devices like smartphones. Processing sketches can also run on smartphones

using Processing’s “Android Mode” [Colubri, 2023], therefore Android Processing users

could benefit from a Vulkan implementation of the renderer too.
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2.4 Related work

2.4.1 P5.js

P5.js is a web-based alternative to Processing which runs in a web browser using

Javascript [Sandberg, 2019]. It is very similar to Processing (on desktop) and has a

similar WebGL mode, which is effectively the web-based version of OpenGL. Tech-

nically, modern web browsers such as Google Chrome on Windows use a translation

layer called Google ANGLE. ANGLE (on Google Chrome, Windows) translates WebGL

commands to Microsoft’s Direct3D 9 commands for improved compatibility [Donaldson

et al., 2017], which is similar to OpenGL. Contributors of ANGLE, Kligge have also per-

formed benchmarks comparing native OpenGL to ANGLE translating OpenGL ES to

Direct3D 9, and found that ANGLE performs on-par to native OpenGL. This indicates

that P5.js has the same performance as Processing’s OpenGL renderer.

Results from Varanka’s work seems to suggest that Direct3D 9 is faster, though this is

highly dependant on the environment and there is no further evidence to suggest that

P5.js’s WebGL renderer is faster than Processing’s OpenGL renderer. It is also worth

noting that WebGL must abide to the same design basis as OpenGL, and therefore

inherits its limitations; that is: lack of multithreading and higher overhead.

2.4.2 OpenFrameworks

OpenFrameworks is a framework for creative coding, similar to Processing, but uses

C++ instead of Java [Chibalashvili et al., 2023], and has OpenGL support [OFo, 2025].

There is a project by Gfrerer which implements Vulkan into OpenFrameworks, though

the Vulkan renderer is designed around “[embracing] the “no-surprises” policy” in such a

way that integrates with the framework, meaning that the programmer is fully exposed

to Vulkan and must program much of the Vulkan code from scratch, rather than being

a drop-in replacement for the OpenGL renderer.



Chapter 3

Project design

3.1 Preface

This chapter discusses the design details of the Vulkan renderer used in this project,

named “PVXD”. Processing’s OpenGL-based renderer is called P2D/P3D, but for sim-

plicity, it will be referred to as “PXD”.

3.2 Processing’s design

3.2.1 PGL

Processing (and, by extension, PXD) is designed in a modular way, such that its com-

ponents can be replaced by others. One module of PXD is an OpenGL abstraction layer

called PGL. Using a custom renderer, Processing’s modularity can be taken advantage

of, and OpenGL commands can be re-directed to alternative code via PGL.

3.2.2 Immediate and retained mode

Processing is designed to be highly flexible with simple code, which is difficult to im-

plement with the rigidity of graphics cards. The overall end goal is to assemble vertex

information on the CPU and buffer this data to the GPU. There are two main ways

8
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Processing renders graphics; by using immediate and retained mode [Colubri and Fry,

2012];

Immediate: In this mode, Processing calculates vertex data and then sends this to the

GPU every frame. Once the GPU has received vertex information, a draw command is

sent to draw the vertex data. This approach is typically slower than retained mode, but

much more flexible, and easier to code.

However, sending a draw command for each piece of geometry drawn is inefficient when

using OpenGL; hence, Processing uses a batching process to batch all the commands

into a buffer of a specified size. Once this size limit is reached, Processing will send

the buffer to the GPU and issue a draw command. The process then repeats until all

geometry in the frame has been drawn.

Retained : In this mode, Processing calculates vertex data and sends this to the GPU only

once. This data is then drawn every frame. This is typically faster than immediate mode

as it avoids expensive per-frame GPU buffering routines, at the expense of flexibility,

making it slightly more involved to program. The buffering process is typically done at

the sketch’s startup, using a class called ”PShape” which enables the programmer to

define geometry to be rendered using retained mode.

There is an exception to this rule however. The programmer can specify child PShape

objects and geometry, which can be independantly transformed (moving, scaling, rotat-

ing, etc). Doing this will cause Processing to re-calculate the vertex data and re-buffer

this to the GPU; a process very similar to immediate mode, and hence is slower than

retained mode with static geometry. For clarity, using retained mode with moving (dy-

namic) geometry is referred to as dynamic retained whilst using retained mode with

non-moving (static) geometry is referred to as static retained.

A simple way to avoid this is to move the base PShape object (without any child objects)

using the transform() function, then call shape() every time the programmer wants the

object to be rendered. This incurs more OpenGL calls which, as previously discussed

in Chapter 2, has a high overhead associated to it. However, this should be less than

the overhead of calculating and buffering vertex data on the CPU, as it offloads vertex

calculations to the GPU and avoids unnecessary buffering. This technique is used in the
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project’s evaluation, and for clarity, this is referred to as optimised retained. As this can

be rather confusing to keep in mind, this table provides clarity on the different modes:

Table 3.1: Rendering modes

Mode Speed Flexibility Static or dynamic
Immediate Slower Flexible Both

Static retained Faster Inflexible Static
Dynamic retained Slower Inflexible Dynamic
Optimised retained Faster Inflexible Dynamic

3.3 Design plans

This section outlines the design plans for the Vulkan renderer, which contains a package

called “GL2VK”. GL2VK houses 3 major components that is described in the following

subsections. A high-level view of the renderer is shown in figure 3.1.

Figure 3.1: High-level graph view of the Vulkan renderer design

3.3.1 Translation layer

Processing’s PXD code is thousands of lines in length; rebuilding the entire logic of

the Processing renderer to use Vulkan would be a monumental task which could take

too long to complete in the scope of this project. Fortunately, Processing’s modular

framework provides a relatively straightforward way to implement a Vulkan framework

without rewriting the logic; by using the PGL abstraction layer. Calls through the PGL
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layer are instead re-directed to an OpenGL-to-Vulkan translation layer. This layer is

specifically optimised to perform well with Processing. Using a translation layer also

means Processing’s renderer does not need to be rewritten or even modified; the results

from this logic are passed to PGL, which gets converted into Vulkan commands through

the translation layer.

3.3.2 Shader converter

A core part of OpenGL and Vulkan is GPU shaders [Vul, 2025a]. Processing uses

numerous shaders depending on what is drawn to the screen. To program shaders, they

both use a language called GLSL to compile human-readable code into instructions for

the GPU. However, Vulkan uses a different variant of GLSL and hence, Processing’s

OpenGL-based shaders will not be compatible with Vulkan. This component solves the

problem by taking an OpenGL GLSL shader as an input and converting it into a Vulkan

GLSL shader. This is done during runtime as Processing passes the shader code via the

shaderSource() OpenGL command.

Another major difference is that Vulkan typically uses pre-compiled shaders (called

“SPIR-V”) which are compiled from source during development time, whereas OpenGL

compiles the shaders from source during the program’s runtime [Singh, 2016]. To solve

this, PVXD contains a shader compiler library to compile GLSL shaders into SPIR-V

during the runtime of the program, which is passed directly into Vulkan as a usable

shader file.

3.3.3 Thread nodes

Vulkan opens the opportunity for multithreading. For this, the renderer uses a system

similar to a master-slave configuration [Azevedo et al., 2011]; the main thread issues

commands to external “worker” threads. These worker threads executes Vulkan com-

mands, which typically have an overhead associated to it, and hence offload the main

thread from this overhead. The main threads issue commands to thread-safe queues,

and worker threads will pick and execute these commands. If a thread runs out of com-

mands to execute, it sleeps until it receives a new command. Each worker thread has

its own queue and Vulkan resources.
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Figure 3.2: A high-level view of the thread node system; the main thread issues
commands to thread via a queue.

3.4 Research Methodology

3.4.1 Evaluation plan

3.4.1.1 Specifications and details

Using a build of Processing with PVXD, 13 test sketches are benchmarked, using PXD

and PVXD. Each sketch has code to record data and exit automatically once the required

data has been collected. The tests are repeated 3 times to collect a mean average of the

data. The following process is followed:

1. Run test sketch with PXD.

2. Wait until it automatically saves the data and exits.

3. Run test sketch with PVXD.

4. Wait until it automatically saves the data and exits.

5. Repeat steps 1-4 two more times.

6. Calculate mean average of the 3 runs.

The tests are performed on a Microsoft Surface Laptop Studio 2. The device specifica-

tions are listed as follows:

Table 3.3: Test device specifications

CPU Intel Core i7-13700H

Base clock speed 2.90GHz

Maximum boost clock speed 5GHz

Cores 6 P-cores, 8 E-cores; 14 total

Logical processors 20

Memory 16GB LPDDR5x @ 2.60GHz

GPU Intel Iris Xe Graphics

OS Windows 11 Home, version 24H2, build 26100.3476

Additionally, the details for the Intel Iris Xe Graphics GPU are listed as follows:

During the tests, the device is plugged in to a power outlet so that the CPU can run

at its full capacity without any power battery power limitations. The operating system

has minimal programs open; only the Processing IDE and the sketch will run on the

system during testing. This is to ensure fair testing; the environment that the Vulkan

sketch runs is exactly the same as the environment that the OpenGL sketch runs in.
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Table 3.5: GPU specifications

Clock speed 1.5GHz

Execution units 96

Configuration Integrated; UMA memory layout

Memory 8GB shared memory

3.4.1.2 Performance metrics

During the evaluation, the following variables is used:

Independent variable (graph x-axis): Frame - Elapsed frames since the sketch
started.

Dependant variable (graph y-axis): Interval - The time between the current frame
and the last frame, measured as:

Interval = (currentT imestamp− previousT imestamp)

Where timestamp is the system’s current time (in nanoseconds) recorded at a specific

point in the program. More specifically, below is a high-level representation of the test

sketch’s code. The interval data is represented in milliseconds to aid readability in the

evaluation section.

long previousTimestamp = System.nanoTime();

while (programRunning) {

// Execute some drawing code, for example, render many shapes.

draw();

// The draw commands are then dispatched to the GPU at this stage.

long previousTimestamp = timestamp;

// Update the timestamp.

timestamp = System.nanoTime();

currentTimestamp = timestamp;

interval[frame] = (currentTimestamp - previousTimestamp);

// Repeat until program closes.

}
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3.4.1.3 Intel VTune

To meet objective O6, sketches are run through Intel VTune, separately from the bench-

marking process. Intel VTune is a performance analysis tool which collects CPU, GPU,

and memory usage information to identify bottlenecks, and show the hardware usage

when programs are running [Int, 2025]. VTune collects this information by collecting

hardware event-based samples, and calculates the metric based on the values between 2

sample points. The collected information is:

� Logical Core CPU Time - Defined from the VTune guide as “CPU Time is
time during which the CPU is actively executing your application.”.

� EU Array Active - Defined from the VTune guide as “The normalized sum of
all cycles on all cores spent actively executing instructions.”.

� EU Array Idle - Defined from the VTune guide as “The normalized sum of all
cycles on all cores when no threads were scheduled on a core”.

� EU Array Stalled - Defined from the VTune guide as “The normalized sum of
all cycles on all cores spent stalled. At least one thread is loaded, but the core is
stalled for some reason.”, the guide states that this is typically caused by memory
bandwidth bottlenecks.

� EU Threads Dispatch - Defined from the VTune guide as “The normalized
sum of all cycles on all cores and thread slots when a slot has a thread scheduled.”.

� GPU Memory Access, GB/sec - Defined from the VTune guide as “GPU
memory read/write bandwidth between the GPU, chip uncore (LLC) and main
memory. This metric counts all memory accesses that miss the internal GPU L3
cache or bypass it and are serviced either from uncore or main memory.”

� GPU Utilization - Defined from the VTune guide as “The percentage of time
when GPU engine was utilized.”

Please note that Intel VTune are not part of the benchmarking tests, rather they exist

to provide an insights and clues into the reason why the benchmarks perform the way

they do; this is to gain an understanding of the results. This represents O7.

3.4.2 Benchmarking tests

Processing provides a set of performance-testing example sketches to test the speed of

the Processing framework. These example sketches are used as benchmarking tests to

ensure that they represent realistic sketches that a Processing programmer may create.

These example sketches have been modified to record performance data. For tests that
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use the random function, a pre-defined seed is set to ensure the same sequence of random

numbers and guarentee that both OpenGL and Vulkan sketches are visually identical.

All tests and their details are listed below. Mode represents whether it runs in immedi-

ate, static retained, dynamic retained, or optimised retained rendering modes. Length

represents the number of frames the test will run before it saves the data and closes.

Screenshot references the figure that shows a screenshot of the test.

Table 3.7: Benchmarking tests

Name, Mode, Length,
Screenshot

Description Purpose

LineRendering, Imme-
diate, 100, 5.1a

Thin transparent lines
are drawn randomly
on to the screen each
frame, using immediate
mode.

To test immediate mode
geometry processing in
an environment that is
not limited by fillrate.

TextRendering, Imme-
diate, 180, 5.1b

20000 small strings of
text reading “HELLO
WORLD” are rendered
onto the screen in ran-
dom positions, every
frame. This uses GPU
texturing.

To find out if there
is any significant per-
formance differences
between OpenGL and
Vulkan using basic
texturing.

QuadRendering, Imme-
diate, 100, 5.1c

Transparent squares are
drawn on to the screen
during this sketch’s
runtime. The number
of squares initially
starts at 10000. As
the number of frames
elapsed since the start
of the sketch increase,
the number of squares
increases by 2000 per
frame.

To test immediate mode
geometry processing in
an environment with
large fillrates, and to
observe scalability as
the number of geometry
increases.

CubicGridImmediate,
Immediate, 360, 5.1d

A large rotating grid
of 3D coloured trans-
parent cubes are drawn
to the screen using im-
mediate mode. Depth
buffering is deacti-
vated so no rendering
errors occur with trans-
parency [Cohen-Or
et al., 2000].

To test rendering of 3D
geometry using immedi-
ate mode.
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CubicGridRetained,
Static retained, 360,
5.1d

Similar to Cubic-
GridImmediate, but
the cubic grid is drawn
using retained mode.
Geometry is created
into a PShape object
during startup, and the
shape is drawn with a
single shape() function
call.

To test rendering of 3D
geometry using retained
mode.

CPUThrottleSingleCore,
Optimised retained,
500, 5.1e

Small square shapes are
drawn using retained
mode, using a tech-
nique which allows each
square to be rendered at
a unique position at the
cost of high CPU usage.

To find out if faster ren-
dering can be achieved
with the low-overhead
Vulkan API compared
to the OpenGL API.

CPUThrottleMultiCore,
Optimised retained,
500, 5.1e

Similar to CPUThrot-
tleMultiCore, except
the multithreading
feature in PVXD is
used.

To compare with
the CPUThrottleSin-
gleCore test results and
find out if Vulkan’s
multithreading support
can improve perfor-
mance over OpenGL,
and by how much.

DynamicParticlesImmediate,
Immediate, 1000, 5.1g

Renders physics-based
textured objects which
originate from a moving
singular point. Immedi-
ate rendering is used.

To compare the perfor-
mance difference of ren-
dering moving objects
in OpenGL and Vulkan
using immediate mode.

DynamicParticlesRetained,
Dynamic retained,
1000, 5.1g

Similar to DynamicPar-
ticlesImmediate, except
using retained mode. A
parent PShape object
contains child objects
which are created dur-
ing startup, and each
child object is moved
using PShape’s trans-
late() function. Ren-
dering all child objects
is done by drawing the
parent object once us-
ing shape().

To compare the perfor-
mance difference of ren-
dering moving objects
in OpenGL and Vulkan
using retained mode.

StaticParticlesImmediate,
Immediate, 360, 5.1f

Fixed-position textured
objects are rendered as
the camera rotates. Im-
mediate mode is used.

To measure the per-
formance of rendering
non-moving objects in
OpenGL and Vulkan us-
ing immediate mode.
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StaticParticlesRetained,
Static retained, 360,
5.1f

Same as StaticParticles-
Immediate, except re-
tained mode is used.
A parent PShape ob-
ject contains child ob-
jects which are created
during startup, and ren-
dering all child objects
is done by drawing the
parent object once us-
ing shape().

To measure the per-
formance of rendering
non-moving objects in
OpenGL and Vulkan us-
ing retained mode.

ManyTextures, Imme-
diate, 1000, 5.1h

Uses same code as
DynamicParticlesIm-
mediate, except each
object’s texture is
different from the last,
resulting in texture
switching.

To find out if using
Vulkan can improve
performance over
OpenGL when exces-
sive texture switching
is performed.

GPUThrottle, Opti-
mised retained, 200,
5.1i

Creates a PShape ob-
ject with numerous ver-
tices, and renders it 100
times per frame. The
object is big and hence
the fillrate is high in
this sketch. This test
is designed to maximise
GPU usage so perfor-
mance differences can
be evaluated on the
GPU.

To measure the differ-
ence between OpenGL
and Vulkan purely on
the GPU.
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Evaluation

4.1 Evaluation preface

4.1.1 Performance representation

The upcoming section will present each of the 13 tests, accompanied by 3 graphs; (a) is

the line graph showing the time interval between each frame with OpenGL and Vulkan.

(b) and (c), are Intel VTune graphs for OpenGL and Vulkan respectively. Note the

VTune graphs should not be viewed as the final results for performance; their purpose

is to provide an insight into potential causes for speedups, slowdowns, or bottlenecks.

In other words, graph (a) aligns with objectives O4 and O5, whereas graphs (b) and

(c) align with O6 and O7. As a guide for graph interpretation, the following conditions

should hold true as an indicator of performance:

� Single-core CPU load, especially in the main thread, should be lower. Less single-
core CPU usage means more work is being delegated to the high-performance GPU,
and offloaded to worker threads in other CPU cores. If the CPU is carrying out
geometry operations that the GPU should be handling, this will have a negative
impact on performance, because the CPU performs these operations much slower
than the GPU. Typically, this results in the GPU being in an idle state without
any work to process.

� Multi-core CPU load (more than one core running at once) should be higher.
Higher usage of other cores means work is being offloaded from the main thread,
which gives it more time to complete important tasks.

� GPU load should be higher. More GPU usage means more geometry is being
processed by execution units specifically optimised for this task, which is positive
on performance.

18
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� Memory access should be lower. Memory bandwidth can cause bottlenecks on
both the CPU and GPU, which has a negative impact on performance.

� Stalling/idle rate on the GPU should be lower, and the active rate should be
higher.

4.1.2 Full CPU and GPU usage

In other computing applications, utilising both CPU and GPU to full capacity is desir-

able, as this maximises computer capability. In this project however, it was just stated

that less CPU usage results in better performance. At first glance, the idea of the CPU

sharing some of the GPU’s tasks is not illogical, especially if the GPU is at 100% usage.

However, this is realistically not suitable for graphics programming; if the CPU were

to share some of the GPU’s tasks, it would eventually have to synchronise its resources

with the GPU, which is likely to cause large slowdowns; this would result in worse per-

formance than not sharing GPU tasks. Therefore, lower CPU usage, even if the GPU

appears to be causing the bottleneck, is typical indicators of good performance.

4.1.3 Graph examples of good and bad performance

Additionally, figure 4.1 show ideal and non-ideal examples of CPU and GPU usage.

(a) An example of good CPU us-
age. Lower CPU time = better

performance

(b) An example of bad CPU us-
age. Higher CPU time = worse

performance.

(c) An example of good GPU us-
age. Higher GPU usage = better

performance.

(d) An example of bad GPU us-
age. Lower GPU usage = worse

performance.

Figure 4.1: VTune graphs showing good and bad examples of CPU and GPU usage.
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4.2 Evaluation results

Test 01 - LineRendering

(a) LineRendering test results

(b) OpenGL VTune view, zoomed in (c) Vulkan VTune view, zoomed in

Figure 4.2: LineRendering test results and VTune graphs

In this test, there appears to be a large difference in interval times between Vulkan and

OpenGL; Vulkan is roughly twice as fast as OpenGL. The VTune graphs shows noticable

reasons for this improvement; the use of multithreading means the Vulkan renderer

can offload expensive buffering operations to other cores; we can see that OpenGL, by

comparison, only ever runs on one core at a time.

This is further backed up by the GPU’s busy time; in the OpenGL VTune graphs, we can

see the GPU running out of tasks and pausing all activity. This is most likely because

the CPU is acting as the bottleneck and is not issuing commands quickly enough to the

GPU. By comparison, the Vulkan VTune results show that the GPU is constantly active;

this indicates that the CPU is providing a constant stream of commands so the GPU

never runs out of tasks, hence avoiding the limitation in OpenGL. Another contributing
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factor memory access; the memory access in Vulkan (approx. 45GB/s read, 43GB/s

write) is about 39% lower than OpenGL’s access rate (approx. 71GB/s read, 67GB/s

write).

Test 02 - TextRendering

(a) TextRendering test results

(b) OpenGL VTune view, zoomed in (c) Vulkan VTune view, zoomed in

Figure 4.3: TextRendering test results and VTune graphs

4.3a shows a interval during the runtime of the sketches on both OpenGL and Vulkan,

with only a small performance improvement on Vulkan. The VTune graphs show that

the GPU is underutilised, completing its tasks much faster than the CPU, making the

CPU the bottleneck in this test. Both OpenGL and Vulkan show an extremely high

active time in the main thread, which indicates that performance bottlenecks reside in

the handling of text and geometry.

There is no evidence to suggest that the use of texturing (for the text) causes this high

CPU usage. The high CPU usage could be caused by the logic handling generation
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of visible text in the sketch, which would not be related to the overhead of OpenGL

or Vulkan. The results also indicate that the slight performance boost arises from the

Vulkan renderer is offloading buffering operations to separate CPU cores.

Test 03 - QuadRendering

(a) QuadRendering test results

(b) OpenGL VTune view, zoomed in (c) Vulkan VTune view, zoomed in

Figure 4.4: QuadRendering test results and VTune graphs

As the frames elapsed increases in the sketch, the number of geometry rendered per frame

increases. Hence, we can observe a linear shape to the graph as the interval increases

during the runtime of the sketch, both on OpenGL and Vulkan. However, Vulkan shows

an interval drop of 8.3 milliseconds on frame 110; figure 4.5 show a sudden memory

access decrease at this point in the program (from 60GB/sec read to 46GB/sec read),

although there is no clear explanation of this sudden memory decrease.

The sketch is CPU bottlenecked throughout its runtime on both OpenGL and Vulkan,

and this only worsens as the number of geometry increases. This indicates that the
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GPU is able to complete its tasks extremely quickly, despite the high fillrate of rendering

quadrilaterals in the sketch.

Figure 4.5: GPU memory access showing sudden decrease in memory access.

Test 04 - CubicGridImmediate

(a) CubicGridImmediate test results

(b) OpenGL VTune view, zoomed in (c) Vulkan VTune view, zoomed in

Figure 4.6: CubicGridImmediate test results and VTune graphs

Figure 4.6a shows a relatively constant latency on both OpenGL and Vulkan renderers

with Vulkan only having a slight improvement over OpenGL by around 10 milliseconds.

The VTune graph results indicates that the program is CPU-bottlenecked; this is appar-

ent if we check the sketch’s code. The sketch makes use of pushMatrix(), translate(), and

popMatrix(), which causes matrix operations to be performed on the CPU per vertex,

possibly largely contributing to the bottleneck.
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The VTune graphs also reveals something interesting on the GPU side: OpenGL has a

much higher stall rate than Vulkan, and the memory access speed is lower than Vulkan’s

access speed. The high stall rate could correspond to the lower memory access rate,

although the cause of this low memory bandwidth is unknown.

Test 05 - CubicGridRetained

(a) CubicGridRetained test results

(b) OpenGL VTune view, zoomed out (c) Vulkan VTune view, zoomed out

Figure 4.7: CubicGridRetained test results and VTune graphs

OpenGL appears to have waves of increased interval times. This could be explained

by the rotation of the geometry in the sketch; as the cubes get closer to the camera,

the fillrate increases, increasing GPU usage, and hence increasing the latency between

frames. Vulkan does not appear to be affected by this, and maintains a mostly constant

interval thoughout its runtime.

VTune reveals several interesting observations about this test:
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� The CPU time on OpenGL is much higher than Vulkan; even taking into consider-
ation the fact that the Vulkan renderer offloading operations to other CPU cores,
this is still unusually high for OpenGL. This could be explained by the overhead
of OpenGL function calls.

� Similar to 4.6, the GPU execution units stall time is much higher on OpenGL than
Vulkan, and the memory access is much lower on OpenGL than Vulkan; this could
suggest a memory bandwidth bottleneck, though it is not clear what this is caused
by.

� The fillrate in Vulkan is very high; this suggests that OpenGL suffers from a poor
fillrate due to accessing memory poorly.

Test 06 - CPUThrottleSingleCore

(a) CPUThrottleSingleCore test results

(b) OpenGL VTune view, zoomed out (c) Vulkan VTune view, zoomed out

Figure 4.8: CPUThrottleSingleCore test results and VTune graphs

OpenGL shows mostly constant intervals throughout its runtime, whereas Vulkan shows

more varied results, i.e. the interval fluctuates randomly and frequently. Vulkan per-

forms slightly better than OpenGL with an approximate 7 milliseconds improvement.

The VTune graphs show that excessive use of OpenGL functions causes spinning in the

CPU as shown by the red markers areas in the CPU view, whereas Vulkan doesn’t ap-

pear to suffer from such stalls. Interestingly, the OpenGL VTune graphs show a separate
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thread working concurrently to the main thread; this could indicate the OpenGL driver

is offloading tasks into another thread, but there is no other evidence to back this up,

so this thread’s functionality is unknown.

Test 07 - CPUThrottleMultiCore

(a) CPUThrottleMultiCore test results

(b) OpenGL VTune view, zoomed out (c) Vulkan VTune view, zoomed out

Figure 4.9: CPUThrottleMultiCore test results and VTune graphs

There is 2 standout behaviours shown in the graph: Vulkan is slower than OpenGL, and

Vulkan exhibits large slowdown spikes at routine intervals. This is a typical indicator

of excessive garbage collection and indicates that there is a flaw in the Vulkan renderer

that is generating too much garbage per command call. However, these spikes should

be ignored; if the spikes weren’t there, the Vulkan renderer would most likely continue

to perform worse than OpenGL.

4.9b and 4.9c show that there is indeed parallelism being used in Vulkan, whereas
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OpenGL with its lack of multithreading support, has similar behaviour to 4.8b. How-

ever, this parallelism appears to be degrading the performance rather than improving

it on Vulkan. This is most likely caused by the overhead of thread scheduling in the

operating system, and the Vulkan renderer’s multithreading system appears to be flawed

when the core count increases.

Test 08 - DynamicParticlesImmediate

(a) DynamicParticlesRetained test results

(b) OpenGL VTune view, zoomed out (c) Vulkan VTune view, zoomed out

Figure 4.10: DynamicParticlesImmediate test results and VTune graphs

In 4.10a, OpenGL linearly increases from 0 milliseconds to around 13 milliseconds as

more and more graphical elements are generated, before reaching the maximum allowed

elements limit. Vulkan also exhibits this behaviour but only between frames 206 and 318;

the beginning of the runtime in Vulkan shows large interval spikes followed by noisy but

essentially constant intervals before frame 206. These large spikes could be explained by

the Vulkan renderer’s memory allocation process as it calls memory allocation functions
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due to increased bufferData() calls. After frame 200, OpenGL’s interval time exceeds

Vulkan’s interval time, which means that Vulkan is faster than OpenGL beyond this

point.

The VTune graphs, 4.10b and 4.10c, show that the GPU completes its tasks a lot faster

on Vulkan compared to OpenGL, and that the CPU acts as the bottleneck on both

OpenGL and Vulkan, although this is partially alleviate on Vulkan though offloading

buffering commands to separate threads, as shown in the CPU activity in 4.10c.

Test 09 - DynamicParticlesRetained

(a) DynamicParticlesRetained test results

(b) OpenGL VTune view, zoomed out (c) Vulkan VTune view, zoomed out

Figure 4.11: DynamicParticlesRetained test results and VTune graphs

In this test, the results from 4.11 show that there is no clear victor in terms of per-

formance; both OpenGL and Vulkan have the same general shape on the graph. This

is significant, because it shows something interesting about the Processing framework,

especially when using dynamic retained rendering.
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As mentioned in Chapter 3, dynamic retained mode performs similarly to immediate

mode in that it re-calculates and buffers vertex data every frame. There is however,

one major difference, as shown by this test: the buffering process takes place outside of

the GL2VK code, therefore buffering operations are not offloaded to worker threads in

the Vulkan renderer. This is the reason the performance doesn’t appear to improve in

this test; this test is CPU-bound, and hence the interval cannot be improved by using

Vulkan in dynamic retained mode.

Test 10 - StaticParticlesImmediate

(a) StaticParticlesImmediate test results

(b) OpenGL VTune view, zoomed out (c) Vulkan VTune view, zoomed out

Figure 4.12: StaticParticlesImmediate test results and VTune graphs

Similar to CubicGridImmediate, the line graph shows a relatively constant latency on

both OpenGL and Vulkan with Vulkan only having a slight improvement. The VTune

graphs, 4.12b and 4.12c reveal that both OpenGL and Vulkan are heavy on CPU usage,

with Vulkan offloading buffering operations to separate cores.
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Analysis of the test code shows that much like CubicGridImmediate, the StaticParticles-

Immediate performs a large amount of operations per element; 4 vertices are generated

via the vertex() function, and state-changing, performance-heavy functions beginShape()

and endShape() are used per element rendered. While this is not direct evidence, it is a

possible explaination for this high single-core CPU usage.

Test 11 - StaticParticlesRetained

(a) StaticParticlesRetained test results

(b) OpenGL VTune view, zoomed out (c) Vulkan VTune view, zoomed out

Figure 4.13: StaticParticlesRetained test results and VTune graphs

This graph shows a large increase in performance on Vulkan; it is approximately 3.5

times faster than OpenGL. On the OpenGL line, we can observe that as the graphical

elements rotate, an inverse bell curve shape is formed on the graph, most likely due to

certain viewpoints of the scene resulting in less elements being drawn on-screen. This is

true for Vulkan too, but to a lesser extent.
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This performance increase is largely attributed to the GPU; the VTune graphs show

that:

� The CPU usage does not pose any performance bottlenecks, even though OpenGL’s
CPU usage is high.

� In Vulkan, the GPU stall rate is lower and the active rate is higher. Additionally,
the memory access is significantly lower in Vulkan (read: 34GB/s, write: 1GB/s)
compared to OpenGL (read: 69GB/s, write: 21GB/s).

Test 12 - ManyTextures

(a) GPUThrottle test results

(b) OpenGL VTune view, zoomed out (c) Vulkan VTune view, zoomed out

Figure 4.14: ManyTextures test results and VTune graphs

Vulkan appears to show spikes of large intervals during its runtime; this could be caused

by memory allocation calls due to frequent bufferData() calls. What VTune reveals

is that there is CPU stalling on OpenGL; this test makes use of an OpenGL function

called bindTexture(), which may be causing the slowdown as this function is not used

in previous tests. Vulkan does not appear to be affected by binding textures on the
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CPU side. However, it is worth noting that both OpenGL and Vulkan renderers have

very high stall times on the GPU Execution Units row. This suggests that frequently

changing texture is not ideal for the GPU hardware in terms of performance, regardless

of what API is used.

Test 13 - GPUThrottle

(a) GPUThrottle test results

(b) OpenGL VTune view,
zoomed out

(c) Vulkan VTune view, zoomed
out

Figure 4.15: GPUThrottle test results and VTune graphs

This test shows only a small performance improvement compared to other GPU-bound

benchmarks like ManyTextures or CubicGridRetained. This may indicate that the GPU

is better suited to pixel processing rather than vertex processing.

Though not related to the test, 4.15b and 4.15c show that Vulkan CPU usage is much

lower in Vulkan than OpenGL. This could suggest a high overhead of calling OpenGL

functions. In an unexpected twist, CPUThrottleSingleCore and CPUThrottleMultiCore

did not show significant speedup due to Vulkan’s reduced overhead. Here however, there

is evidence that performance can be significantly improved through CPU overhead.
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4.3 Discussion

From all the tests above, we can discern the following:

� On Vulkan, performance is increases up to 3.5 times compared to OpenGL, as-
suming that dynamic retained rendering is not used.

� Depending on the implementation of the sketch, immediate mode rendering with
Vulkan can be up to 2 times faster than OpenGL. However, this varies significantly,
and in most cases, it is most likely to only be a 20%-50% performance increase.

� Large CPU load on the main thread is the most likely cause for bottlenecks, de-
pending on the implementation of the sketch. This is due to operations such as
vertex calculations, tesselation, buffering, or miscellaneous logic on the Processing
core, outside of the GL2VK code.

� The graphs from VTune reveal that memory bottlenecks contribute to high stalling
and idle rates, and that OpenGL has a higher memory footprint on the GPU
compared to Vulkan.

� While multithreading aids in offloading heavy operations such as buffering, using
too much CPU cores can cause slowdowns instead of improving performance.

� Texture switching causes high stall rates in the GPU, on both OpenGL and Vulkan.

� On Vulkan, there are no performance improvements when using dynamic retained
rendering. This is because the CPU acts as the bottleneck, and all buffering
operations (that would normally be offloaded to separate CPU cores) are performed
on the Processing core in the main thread, outside of the Vulkan renderer.
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Conclusion

5.1 Summary

The tests show that in general, better performance can be achieved by using the Vulkan

renderer instead of OpenGL, and performance improvements highly varies depending

on the sketch. Basic sketches using immediate mode can perform between 20%-100%

faster than OpenGL. More advanced sketches can achieve up to 3.5 times the perfor-

mance of OpenGL, provided the programmer is aware of the techniques to achieve this

performance.

The tests also show the limitation of this current implementation with Vulkan; numerous

tests were bottlenecked by the CPU. This is mostly due to processes such as tessela-

tion, buffering, and miscellaneous logic. The Vulkan renderer was able to offload these

buffering operations to other cores which improved performance, but the rest of the

operations such as tesselation was delegated to the main thread; this was outside the

Vulkan renderer’s control. In theory, these operations could also be offloaded from the

main thread and to other CPU cores; this should improve performance considerably.

There are also areas in the Processing renderer which are specifically optimised for better

performance with OpenGL, but do not improve performance with the Vulkan renderer. A

major example of this is DynamicParticlesRetained. Much of the geometry is calculated

on the CPU to avoid expensive OpenGL API calls. This could be redesigned to take

advantage of Vulkan’s faster, multithreaded API calls, and offload geometry rendering

34
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to the GPU. It could also be redesigned to take advantage of Vulkan-specific features,

such as descriptor sets.

5.2 Limitations

While this project demonstrated what Processing would look like if it were to use Vulkan,

it is important to keep in mind that it does not represent a perfect Vulkan renderer. The

renderer used the PGL abstraction layer to translate OpenGL command to Vulkan com-

mands, which massively simplifies the implementation process, as the OpenGL renderer

contains tens of thousands of lines of code; refactoring this would have been far outside

of the scope of this project, and would have taken a long time to complete. As such,

there are several limitations with the current implementation of the Vulkan renderer:

5.2.1 Implementation limitations

� Unfit for Vulkan: Processing was designed with OpenGL in mind. Hence, best
practices for OpenGL optimisation are used in the Processing framework. The
problem is that most of these optimisations do not carry over to Vulkan, and in
some cases harm performance rather than make it faster.

� Retained mode: Retained mode in Processing is not ideal for a Vulkan renderer; it
is very similar to then immediate rendering mode in which it re-calculates moved
vertices on the CPU. This is a task that could be significantly sped up if it were
offloaded to the GPU instead.

� CPU bottlenecks: The tests have shown that significant CPU time is used in the
tesselation and generation of geometry. These could theoretically be offloaded
to separate CPU cores much like offloading buffering operations, but it could be
argued that doing so would be outside of the scope of the project: The tesselation
and generation code technically doesn’t relate to any OpenGL or Vulkan code.

� Multithreading: Multithreading in the Vulkan implementation is ultimately flawed
as it causes slowdowns rather than speedups if too much cores are assigned. This
may be caused by the overhead of multithreading outweighing any performance
benefits, and could theoretically be solved with more efficient scheduling and com-
mand issuing code.

5.2.2 Evaluation limitations

The results from the evaluation opens some further questions which do not have enough

evidence for an explanation in this project. Additionally, Intel VTune could not gather
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full debugging information due to the fact that a Java program using bytecode was

being benchmarked. This severely limited the ability to gain more insight into the inner

workings of OpenGL and Vulkan. Had it worked, it would have been significant for

gaining evidence to further explain the behaviours observed. As such, the evaluation in

this project suffers from these main limitations:

� There is no evidence to explain the GPU memory access differences between the
Vulkan and OpenGL frameworks.

� There is no evidence to explain the reason for the high stall rates in all the tests.

� There is a lot of ambiguity in the inner workings of the OpenGL and Vulkan
drivers, including why OpenGL was using 2 threads in CPUThrottleSingleCore.

� Benchmarking individual parts of the Processing code - which could have provided
more explanations about the inner workings of the tests - were not performed and
was considered out of scope for this project.

� In LineRendering, Vulkan has an unexpectedly high difference in interval time
compared to OpenGL, which contradicts some of the results in other tests; Vulkan
has shown to excel at high fillrates, which is not the case for this test. Vulkan has
shown to only provide a slight performance increase in immediate mode, whereas
this test provides a large performance increase in this test. There is no definite
explanation as to what causes the large performance increase.

5.3 Future of Processing

As of the writing of this paper, there are ongoing efforts to modernise Processing, while

ensuring with older sketches work correctly in newer versions. Part of this endeavour

involves removing deprecated libraries. One such library is JOGL, the interfacing library

for OpenGL in Java. Fittingly, this project replaces an increasingly obsolete API with

a newer one; as discussed in Chapter 2, one of the problems identified was the eventual

obsolescence of OpenGL.

The Processing Community lead Raphaël de Courville, and Processing contributor Stef

Tervelde invited the author of this paper to a meeting to discuss this project. What was

made immediately apparent is that backwards compatibility with existing sketches was

the top priority, whereas this project focuses on speed.

This meeting provided an interesting insight into the compatibility issue. Currently,

the version of the Vulkan renderer only works with a very specific subset of Processing
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sketches, while most other sketches do not display correctly or crash. Theoretically, full

backwards compatibility could be achieved while taking advantage of the speed of the

Vulkan framework, but this would take significant development time.

An approach that the Processing developers are planning to explore is the use of Google’s

ANGLE [Goo, 2025]. ANGLE was briefly discussed in Chapter 2 as a translation layer

that translates WebGL into Direct3D 9 in Google Chrome. However, modern releases

of ANGLE outside of Google Chrome can translate OpenGL ES to other graphics APIs,

including Vulkan. Using such a framework would take much less development time than

using Vulkan natively. This would solve the JOGL obsolescence problem and future-

proof Processing should support for OpenGL cease on certain platforms.

However, this could be a concern for performance, especially in the future. Using AN-

GLE would mean that only OpenGL ES features can be used; features specific to Vulkan

(some of which can aid performance) cannot be used. For example, Vulkan supports

multithreading; several tests in Vulkan had an advantage over the OpenGL renderer due

to offloading expensive operations to separate cores, which cannot be done in OpenGL.

Kligge has found that a Vulkan-like API, WebGPU, performs better than the OpenGL-

based WebGL, which uses Google’s ANGLE [Kligge, 2024]. This suggests that natively

using Vulkan rather than through ANGLE is faster.

5.4 Future work

The results shown in this paper has proven that Processing can benefit from utilising

Vulkan. However, this is only one element that was discovered during this research;

bottlenecks were discovered that were not caused by OpenGL, and the meeting with the

Processing developers has brought forward the issue of backwards compatibility. From

this, several recommendations can be formulated.

� Offloading tesselation and geometry processing to other threads - Most
of the bottlenecks in the tests were caused by the tesselation and geometry gener-
ation logic; it may be possible to offloaded these operations into worker threads,
which would coincide with Vulkan’s multithreading support, and improve perfor-
mance considerably.

� Redesign retained mode - The DynamicParticlesRetained showed that re-
tained mode was heavily limited by the fact that geometry calculations were being
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calculated on the CPU, which is not ideal for performance; using Vulkan pro-
vides a strong opportunity to better optimise retained mode and move geometry
calculations to the GPU, which would be much more efficient.

� Testing on other hardware - The tests were performed on only one device,
which means that the data is limited for a framework that runs on a range of
different devices. The tests could be repeated on several different systems with
different GPUs. It is also worth noting that the tests were performed on integrated
graphics with a UMA configuration; further testing could be completed on discrete
graphics cards where the results are likely to be different.

� Experimentation with Google’s ANGLE - The renderer used in this paper
does not have good compatibility with some Processing sketches, so an alternative
solution could be to use Google’s ANGLE. Using ANGLE would be much faster
in development time by comparison. This may not be the most efficient solution
in terms of performance, but it may be possible to gain native access to Vulkan
by modifying ANGLE’s source code. If this is achieveable, this means that both
OpenGL and Vulkan can be used at the same time; Processing would benefit from
backwards compatibility (where needed) and faster performance.

Additionally, using Vulkan in Processing opens interesting opportunities, which could

vastly benefit Processing in areas other than performance:

� Vulkan abstraction layer for learning Vulkan - Similar to PGL, a Vulkan
abstraction layer would allow interfacing with Vulkan in the Processing environ-
ment. There are programmers who have learned OpenGL through Processing,
because of its beginner-friendly coding interface which hides complicated boiler-
plate. Vulkan is considerably difficult to learn, and requires a lot of boilerplate
code before anything can be rendered. Introducing access to native Vulkan within
Processing sketches could massively improve the process of learning Vulkan.

� More options for using Vulkan - If a programmer wants to use OpenGL,
there is a wide range of engines, libraries, tools, and frameworks that can aid with
development using OpenGL. With Vulkan, its only major significance is in high-end
game engines such as Unity and Unreal Engine, which do not expose the specific
API interactions, and can hinder flexibilty to the programmer [Campbell, 2023].
The only other option would be to write code from scratch using Vulkan, which
is a difficult process. Introducing Vulkan to Processing provides a new option for
using Vulkan, which could bridge the gap between low-level coding from scratch,
and high-level game engines.

� Usability studies - A study involving participants could be carried out to
discover how much easier it is to learn and use Vulkan in Processing, compared to
learning and using it from scratch.
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(a) LineRendering (b) TextRendering

(c) QuadRendering (d) CubicGridImmedi-
ate/CubicGridRetained

(e) CPUThrottleSin-
gleCore/CPUThrottleMul-

tiCore

(f) StaticParticlesImmedi-
ate/StaticParticlesRetained

(g) DynamicParticlesImme-
diate/DynamicParticlesRe-

tained

(h) ManyTextures

(i) GPUThrottle

Figure 5.1: Screenshots of the test sketches.
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Szabó, D. and Illés, Z. (2022). Real-time rendering with opengl and vulkan in c#.

In Recent Innovations in Computing: Proceedings of ICRIC 2021, Volume 2, pages

599–611. Springer.

Tolo, L. O., Viola, I., Geitung, A. B., Soleim, H., and Patel, D. (2018). Multi-gpu

rendering with the open vulkan API. In 31st Norsk Informatikkonferanse, NIK 2018,

Universitetet i Oslo, Oslo, Norway, September 18-20, 2018. Bibsys Open Journal

Systems, Norway.

Unterguggenberger, J., Kerbl, B., and Wimmer, M. (2022). The road to vulkan: Teach-

ing modern low-level apis in introductory graphics courses. The Eurographics Associ-

ation.

Unterguggenberger, J., Kerbl, B., and Wimmer, M. (2023). Vulkan all the way: Transi-

tioning to a modern low-level graphics API in academia. Comput. Graph., 111:155–

165.



Bibliography 44

Varanka, S. (2023). Platform-agnostic data visualization in qt framework. Master’s

thesis, S. Varanka.

Wolff, D. (2011). OpenGL 4.0 shading language cookbook. Packt Publishing Ltd.


	Declaration of Authorship
	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Context
	1.2 Aim
	1.3 Objectives

	2 Background
	2.1 Processing
	2.1.1 Processing Overview

	2.2 OpenGL
	2.2.1 OpenGL's history
	2.2.2 OpenGL's performance issues

	2.3 Vulkan
	2.3.1 Vulkan overview
	2.3.2 Performance improvements from other works

	2.4 Related work
	2.4.1 P5.js
	2.4.2 OpenFrameworks


	3 Project design
	3.1 Preface
	3.2 Processing's design
	3.2.1 PGL
	3.2.2 Immediate and retained mode

	3.3 Design plans
	3.3.1 Translation layer
	3.3.2 Shader converter
	3.3.3 Thread nodes

	3.4 Research Methodology
	3.4.1 Evaluation plan
	3.4.1.1 Specifications and details
	3.4.1.2 Performance metrics
	3.4.1.3 Intel VTune

	3.4.2 Benchmarking tests


	4 Evaluation
	4.1 Evaluation preface
	4.1.1 Performance representation
	4.1.2 Full CPU and GPU usage
	4.1.3 Graph examples of good and bad performance

	4.2 Evaluation results
	4.3 Discussion

	5 Conclusion
	5.1 Summary
	5.2 Limitations
	5.2.1 Implementation limitations
	5.2.2 Evaluation limitations

	5.3 Future of Processing
	5.4 Future work

	Bibliography

